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1. ITRODUCTION.

P. Huber introduced the simultaneous H-estimates of location and

scale, n and a, based on observations y . . . . ...yn as a solution

(T .Sn ) of

n £n{ I *(s (yi-Tn)) - 0,

n
E £ x(S (y i-Tn)) - 0,'n i n
i-1

where * and X are suitably chosen functions. In most cases 0 is an

odd and X an even function. In particular he studied H-astimators

generated by functions * and X of the form (Huber's Proposal Z)

{#(x) - uign(x) uin(IxF,k),

(1.), X(z) - in(k 2,x 2) - 0k*

with 0k chosen to make E(x(z)) - 0 if the distribution of z ismk

N(O,1). We refer to the books by Huber (1981) or Hampel et al (1986)

for a review of the properties of the H-estimators. There it is

proved that, if the observations are i.i.d. with a sysmtric

distribution, * is an odd and X an even function, it follows that

{ n n) E AsN(0, 2E(12(Zl ))/(E(z#x'(l)))
(1.3))EAs(O 2 T 2 ( )/EZ # 0)2

where z1 -o-1(yl-n). In this case T and S are asymptotically

independent.

In real time situations, where the estimate is updated when new ob-

servations are obtained, it is often preferable to use a recursive

estimator. Martin and Masreliez (1975) pointed out the possibility of

constructing recursive M-estimators using a stochastic approximation

approach. The classical results for stochastic approximation algorithms

oI
I _
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can be applied rather straightforwardly to investigate the asymptotic

properties of recursive M-estiuators when the observations are inde-

pendent.

The behaviour of recursive H-estimators in dependent situations are

less know. The pure location parameter case with a-dependent and

strongly regular observations is studied in Holst (1980) and Holst (1984)

respectively. For practical use some recursive estimator of scale must be

constructed and coupled to the estimator of the location parameter.

Recursive scale-estimators vhich are variants of the median absolute

deviation are studied in Hoist (1985).

A broader approach to the estimating problem is to construct

recursive algorithms based on (1.1). In this paper we prove strong

convergence of estimators of the form

+ (+1)(a (;n+1 " n n an (n+l-nn))'

(1.4) - + (n+l) nl2 -n )-n+1 n n n a

,100 CO$ () 2) arbitrary and finite,
0,% Iq

(1 (2).
and mainly we discuss the following choice of Hl n and R n

n n

n i"I

(1.5) j(2) " (n-I Z 1 1 -nl-l.)x ('~- -

With the notation v we mean v truncated above and below.

ge consider the case when the observations (y L}' - can be described

by a strictly stationary process satisfying certain strong mixing

conditions. For the analysis we assume that # and X satisfy some

regularity conditions. These are introduced in Section 2.

* Strong convergence of nn and an  and also of the adaptive

sequences H(J)  and R(2 ) is proved in Section 3.
n

',

e s ~ " = ' ' J " " " " " " ' ' ' + ' ,%"' ' " ' ' " ""% ' ' "" " " ' ' "
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In Englund, Hoist and Ruppert (1987) we prove a strong

representation theorem for the estimators. It is possible to derive

asymptotic distributions using this theorem together with suitable forms

of the Central Limit Theorem. When the observations are a sequence of

- i.i.d. variables it follows that (nn ,an) has the same asymptotic

distribution as the nonrecursive estimator (Tn,Sn). Comments on the

asymptotic distribution is given in Section 4. Further we discuss whether

our choice of H(n and E(2 ) is optimal or if it is possible to find a.. n n

better one. We consider a gain matrix vhich might be preferred, but this

matrix contains unknown parameters which like a and b must be

estimated, and this leads to an expansion of the dimension of the

parameter.

In Section 5 we illustrate the behaviour of the estimates for

-uber's Proposal 2 when the observations are £.i.d. with a contaminated

normal distribution.

2. NOTATIONS AND ASSUMPIONS.

To incorporate the adaptive sequences K() and H(2) we rewrite
n n

the algorithm in the following way

On+' " On + (n+l)I Hnh( ,yn+l),

0, H0  arbitrary and finite,

,%J

where

On = (nuio noan ,b)T

.Further

-n (Un+0

h(eny.) O, (un+ -
n n+I 

(un+ ) - n

Un+,Xf(un+) -bn

U-.%
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with

and

(2.2) Ha - dia$( I n  , 1, 1 )

With the notation an we mean a ntrunca.ted above by a large positive

nmber V2  and below by a smll positive number v so that

if "V vI  i.f % < VIP,

(2.3) a a if v 5a SV2

V2  if a v2 .

Throughout the paper it is understood that v1  a S V 2 . The above

" notation will also be used for a and b . Note that

-Ina a n 1 # *'(u )
U 0

and

- n

e so ta ws in ( ) get algoritha (1.4) with

N tn n

and K(2n given by (1.5).

Define

..'.' hz) -E(h~x~yl))

and let 6 be the solution of h(8) . 0, where 6 - (,c,a,b) T , that

is with z1 - (7 1 -')

EC*(z1 )) - 0,

(2.) fE(x(z1) 0,
.-

" '.''"(2.4)1 (E(*'(z1 ) a.
E(zIx'(z 1 )) - b.
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Let -- - F (yI .. ,y be the a-algebra generated by the random

variables y, .... 7m" The sequence of strong mixing coefficients a

is defined

a, " sup (Fr-iF) - sup sup IP(FG)-P(F)P(G).
U * FEY', GEFm

p • . 1.

Further, we need the following notations n(k) - [k I for some
-'. 8>2 and

n(k+l)-l

k 0 Z (i+1)- O(k-).
i-n(k)

The constant C is positive and may change from line to line. For

shortness ye usually write z instead of z below.

Finally we list the following assumptions for later use.

Al. The sequence of observations {y }= is strictly stationary and

strong mixing with Z7.1 aE-C < " for some 0 < c < 1. The marginalii
distribution is symmtric, continuous and positive in a neighbourhood

of n.

A2. The function h(xy) is bounded and Lipschitz-continuous both as a

function of x and y i.e.

, [h(xlY)-h (x2,Y)l 11; K, x Cx-2 11

llh(x.yt)-h(x,'Y2)1 ;S K2 11yI-Y211

for som* positive constants KI and K2.

A3. The function 0() is bounded, increasing (strictly increasing in a

neighbourhood of zero) and odd. The function X(') is bounded, increasing
b'h

on (0,-) (strictly increasing in a neighbourhood of zero) and even.

A4. The function h() satisfies 9(0)- 0.

A5. The following functions exist and are bounded:

*(k)(x) for 1 S k S 3, x k (k) x) for 1 5 k 9 2, x2 (3)x),

X(k) k X(k)
.' xk)(x) for 1 S k S 2 and xkX (x) for I S k S 3.

..-- . ', .- '..-. . . 4, ,
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Note that A2 holds if the functions x*'(x), xs"(x), xX'(x) and

x 2 (x) exist and are bounded and that A5 is a strong assumption which

is used in Section 4 only.

3. ALMOST SURE CONVERGENCE.

In this section we study almost sure convergence of the algorithm

(2.1). It is proved in Theorem 3.1 that e0 8 a.s., where 8 solves

S() - 0. The proof consists of two parts. Following Ruppert (1983) we

show that

(31) 8 -n(k+l)-1 l
(31) a.Z(k+ )= (i+1) Hih(en(k)) + o(k-J)

n(k+1) -n(k) 1=n(k)

This is accomplished by writing

n (k+)-1 -1(3.2) n(k+l) - n(k) + r-u (I+) "I±h(8n.).)

'' -" n (k+1)--1

+., (i+1) Hn(k) (h(en (k) 'Yi+)-(e (k))) +

n~k (I1)-
+ E (k) f(- (~~) y~)he )
n(k+l)-1

+ E (i+l)-I (H -n(k) )(h(en(k),yi+l)-Re n(k))) +
i-n(k)

n(k+l)--
-,)+ r (+ ) i£ (h(eilyi+n)-h n(k),yi ))

i n(k)

'.
..(k+)- _1- n~, r (i+1) H) +

... :t,,m(k)

+ Rk~n(k+l)l + Sk,n(k+l)l + Tkc,n(k+,)_,

say, and then we prove that Rk,n(k+l)_l' Sk,n(k+l)-l and- Tk,n(k+l)_l

all are o(k ). The most involved expression, Rk,n(k+l)_l, is handled

in Lemma 3.3, which is a lemma by Ruppert (1983, Lema 3.2). The second

part of the proof is to show that (3.1) is sufficient to establish
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convergence. This is verified using Lemma 3.4, which is proved by a

technique similar to the one used by Blum (1954).

In Le ma 3.1 we prove that (g(y 1 )} is a mixingale vith

parameters * m of size - and cn  a constant if g(°) is a bounded

function with E(g(yl)) - 0. For a definition of mixingales and

notations, see McLeish (1975). Also the result in Lemma 3.2 is a

amingale inequality by McLeish (1975, Theorem 1.6).

LEM& 3.1 Let g(-) be a bounded Borel-masurable function with

E(g(y1 )) - 0. If Al holds then fg(yl) is a mixingale with

parameters *a of size - and c a constant.a% n

Proof Let : - F{y,...,yn. Lemna 2.1 by McLeish (1975) with p = 2

and r gives

%IE(S(Y)IF'.--E((Y))I2 " IIE(s(T)IF-I 2
~~ ~ n))12 22+) (_" 1s(n I

SS Ca

that is #2 -Q and c - C. The fact that E 1 -< for some

.. 0 < c < 1 implies that Vi is of size -h according to McLeish

(1975, p. 831). This proves the lema. C

LEM 3.2 Let (g(y 1 )}1  be defined as in Lemma 3.1. Then there exists a

constant c such that
"%1 n 2

E(mixJ Z dig(yi)1 2 ) S c Z d

nSM i-I i-i

for all m and constants dl, , d .

Proof It is obvious from Lemma 3.1 that {dig(Yi)}i is a mixingale

with parameters 0. of size - and c a d C. Theorem 1.6 by MeLoish

(1975) proves the lea. a

N, --- - ..---.-.--.-.-. - - -- - - 4
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LEMMA 3.3 If AI-A2 hold then

.- 1

sup4  MAY k~ I - ( h(x,y+)-(x))I - 0
xcR n(k);iS<n(k+1) i-n(k)

when k - -.

Proof According to Ruppert (1983, Lama 3.2), we have to verify his
assumptions A.3-A6. A3 is obvious, A4 is exactly Lema 3.2

above if r - * and A5 is satisfied since h(xy) is bounded.

Finally A6 follows from the Lipschitz continuity of h(x,y) as a

function of y. This proves Lemma 3.3. a

:..

LEMMA 3.4 Let t(-) be a bounded function from Rn  to R, xQ ) an

* element of R and (xk} a sequence of r.v. satisfying the following

assumptions:

i-1) .Q]) Dkt(x.k) + O(k- ) a.s. for some positive sequence
%1- -k1

(Dk!7 satisfying Klk I Dk k k -  where K, and K2  are positive

constants.

B2. For all y > 0 there are 61,82 > 0 and N Y satisfying

sup tkwxk) --- 6, where the suprenm is for 1xk : ) > x()+,

and

inf t(xk) - 62 ,  where the infimum is for {xk :Q) < X) -Y},

for all k N.
Y

Then (J) Z a.s.

Proof Assume that x_ "  ". The assumptions make it possible to find a

constant NI such that Dkt(xk) + o(k1 ) < 0 for k > N1, and thus

Q)+ < Q~) ad hence we get a contradiction. (The case (j.~ ~ i

treated in the same way.) Nov assume that x,_ ) doesn't converse, that

is liminf Q) < liisup W, and also assume that liasup Q) > x - .

(The case limup xQ ) S x is handled by a similar argument.)

Define Y from the relation limeup x] - x' j ) + 3y. Take N2  so large

that -Dk61 + o(k - t ) < 0 for k > N2 . Then we can find N2 S n, m > n+1
k N
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such that x < x+ y, + + Y
'4'

for k n+I,...,m-1 and x"j" > x + 2Y. This is possible since,', m

Q)~ (J 0. Now

J-1 -1

'(J) - (J) - Z (Dkt(xk) + o(k )) < D t(x) + o(U- )

and this quantity can be made arbitrarily small, which is a

• contradiction. a

Theorem 3.1 will now be stated.

THEOREM 3.1 Let e be generated by algorithm (2.1). If A1-A4 hold,

then e - 8 a. S. as a a.a

*Proof The first part is to prove that

nlkh)-l -1
(3.3) n - enk) + n (i+1) H h(e ) + o(k- )

n.. ),i-n(k)

For n(k) 9 L < n(k+l) we have

0 .., - e+ (L+1)-'1Hh(e±.yt+i)

e n(k) + E (i+1)-H ih(eiYi+ )~i-n (k)

E i+ i i +

, (k) + (i+)-i ((k)) +i-n (k)

L
+ E (i+1) H n(k) (h(9 n(k),yi~)-S(e (k))) +
i(n(k)hOn(k)

L
+ U (+1) (CH -Hk )(h(6 nkYil-S(e8 k)) +

L

i-n(k) ( -+ -

t
. (k) + r (i+l)- H i(e n  + +T, ~ ~~~~~~i-u (k) () '  k I + T '

The fact that i[R ,k ) - o(k- ) follows from Lemma 3.3 and due to the

boundedneas of h(xy) we also have liSk iii - o(k- ) if we can prove
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that

sup H- 0(1)
n(k)<i<n(k+l)

This follows easily for our choice of H The term T,, is treated by

* writing

1 -1
lITk,.t II Z (i+1) - i(h(ebYi+l )-h(O n(k) ,y+l) )II

kL i-n(k)

I';. C r (i+l)-lllh(e i ,  yi+l -( k ilL!
i-n(k)iYl+ y k)

9 C E (i+l)-111e -en (k)I
i-n(k)

s cOk max llei-e,(k) l1
n(k)S:i<n(k+)

since h(xy) is Lipschitz continous in x. Now we have proved that

OL )e+I-e n(k) 11 :5 C IPk + O(P k) + C 2pk  max 11 ei-e (k)II.
)n(k)gi<n(k+l)

The inequality

(3.4) max 1 ±(k)
n(k)Si<n(k+l) - (Clpk+0 (Pk))/(l-Cpk)

for large k gives ITk, ll - O(k-). Ssmarizing we have verified (3.3).

The second part of the proof is to show that this gives the result

stated in the theorem. We apply Lem 3.4 to the components of the vector

h(8 ) It is obvious that Bl holds and it remains to verify B.1
n (k)

for all components. We start at h1)( )) and take the components

in order. The convergence of n follow because h()(n )
n~k) n(k)

satisfies B2 since *(-) is increasing and odd. For a Ck) we have

K 8 g 2 )(e (k) h(2)c (k) + S(2) n

where

K"~k (ni,an(k)an(k) b n(k)) 
T •



Assumptions land A4 implies that (Kn(k) -6 if a n(k)

because x(-) is increasing on (0,n) and even and the first part of

the assumption is satisfied from the fact that

, _ R(2) (,k)l Cln n(k)-l 5 6/2e:-(n(k)) " (n(k) k)

if k is large enough. This is due to the proved part above and the

Lipschitz-continuity of h(x) as a function of x. The second part of

the assumption follows in the same way. The convergence of a (k)

follows because

.i-:i (3) (3) ) (3)+ 3
s 3 )(6n(k) 3)(6nk) ( n(k) + (n(k))

"(3) - R(3) + a a
n(k) n(k) n(k)

where

*.. A (n, a,an) ,b
I n(k) n(k) n(k)

v
m
" -The Lipschitz-continuity makes it possible to choose N such that

4.- .l (on(k) ) - E n(k) )ll A C(l1n-n~ l+4Ua-O 11) < 6/2

Uk k) n(k) n(k)

for all k > N, and this proves that a ' a. A similar argument

shows that b * b.
a (k)

The relation lie -e 1* 0 and the previous result (3.4)
n(k+1) n(k)

proves the remaining part of the theorem.

4. COMMETS ON THE ASYMPTOTIC DISTRIBUTION AND ON THE CHOICE OF THE

ADAPTIVE MATRIX.

In Section 3 we proved strong consistency of the algorithm (2.1). In

order to discuss our choice of H we also need results for the

asymptotic distribution of the algorithm.

The asymptotic distribution can be derived from a strong represen-

oI

-RA
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tation theorem which is proved in Englund, Holst and Ruppert (1987).

The same theorem is stated here without proof to facilitate the
-. 4.o

discussion below. (By the notation x in this section we mean a

continuous and differentiable version of (2.3).)

THEOREM 4.1 If Al, A3-A.5 hold and e is given by the algorithm

(2.1), then there exists e > 0 such that

n -1
r a U*( k)k-I

* . n

k-1 xz)

* n n
d E log(-)X(z + I ,(z )-a)
I k-1 n k k-) (*(k))

n k
d Z log(k)x(z ) + I (zkX' (zk)-b)

'k--1 nk-1

where zk -1 (yk-n) d1  b- 11(z0"(z1 )) and d2 -I+b'1E(z2l"(Z1 )).

For a sequence of indep dt observations the theorem gives

n%(8n-e) E As N(OV),

-- where

V 11-0 0 0

V' V33 V 34

V44

with variance elements

V - a 2o2 E*2 (z),

V 22 b- 2E2(z),

V3 3 - V(W'(z)) + 2d2V(X(z)) -2d C(X(z),'(z)),
33
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V - V(zX'(z)) + 2d 2V(X(z)) - 2d2C(X(z),zx'(z)),V4422

and covariance elements

V2 3  -d1b- oV(X(z)) + b CC(X(z),*'(z)).

V24 " ) + b- aC(X(z),zX'(z)),

V34 - 2d1d2 V(X(z)) - dIC(X(z),zX'(z)) - d2 C(X(z),*'(z)) +

+ C(zx'(z),*'(z)).

In the remaining part of this section we discuss whether Ha in

Section 3 is optimal or if we can find a better one.

Given a recursive algorithm it is well known that the "optimal"

adaptive matrix Hop t  is the negative inverse of the derivates of h(e).

Here we get

E(*' (z)) E(z*'(z)-(z)) 0 0 -1

- E(X'(z)) E(zX'(z)-X(z)) 0 0

E (z)) -(a- zo"(z)) 1 0

"(- (x'(z)+zx" (z))) E(- (zx' (z)+zx"())) 0 1

If * is odd and X even this reduces to

1/ -1
I a 0 0 0

• 0 0 0

(4.1) #opt - 0 -()

0.)= -(ba) -1(z¢'(z)) 1 0
0 - (I+b- IE(z 2 V (Z)) 0 1

where as above a = E(*'(z)) and b - E(zX'(z)). The values of a, b,

E(z*'(z)) and E(z2 "'(z)) are in general unknown and if we try to

,3 estimate E(zV'(z)) and E(z2 x" z)) we get more elements in the

parameter vector.

It is however worth noting that this more complicated algorithm may

reduce the asymptotic variances of a and b . If we assume that we
-S,

wA
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know the values of dI - b-E(z*"(z)) and d2 - 1+b-E(z2x"(z)) and

insert them and the truncated estimates of a and b in the matrix

ai op we got the algorithm

n'. n. n' + (n+1) ,(u, )/.

a;+, " a' + (n+1)- I'd) "+ ' "
(4.2) 

(ua
a,.1  - a; + (n+1)-(,'(u;+ ) - dx(,, .) - a'),

b'n+1 b' + (n+l)-n(u;+iX' (u1 +) - d2X(u ) -b),

where u'+ - (y*+ -nn)/l'. It is easy to prove that this algorithm

satisfies 0' * 0 a.s. and from the technique used in Englund, Holst

and Ruppert (1987) it also follows for independen. observations that

nUh('-e) E As N(O.V'),

where

V 1 0 0 0

V' - V22  V23  V24

V44

The only difference between V and V' is the elements

Vt 3 - V(,(z)) + d2V(x(z)) - 2d C(x(z),*' (z))

V(zX'(zl) + d 2V(X(z)) - 2d2C(x(z),zx'(z)).

# 4 dd 2V(x(z)) - d C(x(z),zx'(z)) - d2C(x(z),*'(z)) +

" + C(zX'(z), '(z)).

Note that the variances V33  and V44  for the algorithm in Section 2

33 44both are larer than V;3 and V 44

As an example we take Huber's Proposal 2 with k - 1.5. Although

the functions defined in (1.2) do not satisfy A2 and A5 it is

conjectured in Englund, Holst and Ruppert (1987) that the theorem is

I? **
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valid if d and d2 are interpreted as d - -2b' kf(k) and

1 1
.- d2 w 2 - 4b-k 3 f(k), where f is the density of z. For this choice and

independent N(0,I) distributed random variables we get

1.0371 0 0 0

40.6894 0.0621 0.2797

0.1641 0.2262

1.2326

is and

1.0371 0 0 0

.9"" 0.6894 0.0621 0.2797
v-

0.0600 0.2699

1.2143

Observe that b' " 2k2&; - 2(k2 - 8k) for Huber's Proposal 2, which
nk

Uipies that p(a',b') 1 1 and hence the number of components of 8'
n n

reduces to three.

It is our intention to study algorithm (4..2) vith estimates of d

and d2 in the near future. For Huber's Proposal 2 we only have to esti-

mate d1 and this makes use of Hopt more feasible.

5. A UMEICAL EXAMPLE.

In this section we give a numerical example of the adaptive
"" • •1000

estimator defined in Section 2 when y 1000 is a sequence of
ti1

independent r.v. with a contaminated normal distribution

0.9N(0,1)+0.IN(0,25). We will use Huber's Proposal 2, defined in (1.2).

, The constant k is chosen to 1.5 which makes B 1.5  0.7784. The

variables a , an  and bn  are all truncated below by 0.1 and above by

10. To avoid that bad early estimates of a , a and b influence then n n

results too much we take H - I andn

04
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(an n-"nn))

%- -

h( a n (Yn+( -n ))

if n s 50. The inti a l value is e0 - (0,1,0,0) T and the solution

T T
of (2.4) is (n~aa,b) (0, 1.1346, 0.8468, 0.8024)

The figures below are produced to give an impression of the

behaviour of the recursive estiaates. The performance of rn, n an

and b for n - 1,...,1000 is shorn in Figures 5.1 - 5.4 respectively.n

Also the recursive least squares estimator of n, the sample man, is given

'C.' in Figure 5.1 for comparison. The arros in the figures indicate the

convergence points.

.42.

.1.2

8'.

0.

1.2

1.2

", 0.8

4' 0.'

0. 290. 500. 750. 1

Fit. 5.1. 1: n

% 2: ample mean
.4
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Finally vs mention that the asymptotic variance is 1.3977

for the recursive estimator, while the least squares estimator has the

asymptotic variance 3.4000.
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